top of page

Recent Publications

Publications

  1. Goh KJ, Altuvia Y, Argaman L, Raz Y, Bar A, Lithgow T, Margalit H and Gan YH. (2024). RIL-seq reveals extensive involvement of small RNAs in virulence and capsule regulation in hypervirulent Klebsiella pneumoniae. Nucleic Acids Research. doi: 10.1093/nar/gkae440. 🔗

  2. Plum MTW, Cheung HC, Iscar PR, Chen Y, Gan YH and Basler M. (2024). Burkholderia thailandensis uses a type VI secretion system to lyse protrusions without triggering host cell responses. Cell Host and Microbe. doi: 10.1016/j.chom.2024.03.013. 🔗

  3. Tan YH, Arros P, Berrios-Pasten C, Wijaya I, Chu WHW, Chen Y, Cheam G, Naim ANM, Marcoleta AE, Ravikrishnan A, Nagarajan N, Lagos R and Gan YH. (2024). Hypervirulent Klebsiella pneumoniae employs genomic island encoded toxins against bacterial competitors in the gut. The ISME Journal. doi: 10.1093/ismejo/wrae054. 🔗

  4. Galvez-Silva M, Arros P, Berrios-Pasten C, Villamil A, Rodas PI, Araya I, Iglesias R, Araya P, Hormazabal JC, Bohle C, Chen Y, Gan YH, Chavez FP, Lagos R and Marcoleta AE. (2024). Carbapenem-resistant hypervirulent ST23 Klebsiella pneumoniae with a highly transmissible dual-carbapenemase plasmid in Chile. Biological Research. doi: 10.1186/s40659-024-00485-2. 🔗

  5. Chang KC, Nagarajan N and Gan YH. (2024). Short-chain fatty acids of various lengths differentially inhibit Klebsiella pneumoniae and Enterobacteriaceae species. mSphere. doi: 10.1128/msphere.00781-23. 🔗

  6. Li M, You K, Wang P, Hooi L, Chen Y, Siah A, Tan SB, Teo J, Ng OT, Marimuthu K, Venkatachalam I, Blasiak A, Chow EKH, Ho D and Gan YH. (2024). Discovery of Broad-Spectrum Repurposed Drug Combinations Against Carbapenem-Resistant Enterobacteriaceae (CRE) Through Artificial Intelligence (AI)-driven Platform. Advanced Therapeutics. doi: 10.1002/adtp.202300332. 🔗 

  7. Rojas D, Marcoleta AE, Galvez-Silva M, Varas MA, Diaz M, Hernandez M, Vargas C, Nourdin-Galindo G, Koch E, Saldivia P, Vielma J, Gan YH, Chen YH, Guiliani N and Chavez FP. (2024). Inorganic Polyphosphate Affects Biofilm Assembly, Capsule Formation, and Virulence of Hypervirulent ST23 Klebsiella pneumoniae. ACS Infectious Diseases. doi: 10.1021/acsinfecdis.3c00509. 🔗 

  8. Chen Y, Yong M, Li M, Si Z, Koh CH, Lau P, Chang YW, Teo J, Chan-Park MB and Gan YH. (2023). A hydrophilic polyimidazolium antibiotic targeting the membrane of Gram-negative bacteria. Journal of Antimicrobial Chemotherapy. doi: 10.1093/jac/dkad274. 🔗 

  9. Chu WHW, Tan YH, Tan SY, Chen Y, Yong M, Lye DC, Kalimuddin S, Archuleta S and Gan YH. (2023). Acquisition of regulator on virulence plasmid of hypervirulent Klebsiella allows bacterial lifestyle switch in response to iron. mBio. doi: 10.1128/mbio.01297-23.  🔗 

  10. Yong M, Kok ZY, Koh CH, Zhong W, Ng JTY, Mu Y, Chan-Park MB and Gan YH. (2023). Membrane potential-dependent uptake of cationic oligoimidazolium mediates bacterial DNA damage and death. Antimicrobial Agents and Chemotherapy. doi: 10.1128/aac.00355-23. 🔗 

  11. Kang JTL, Teo JJY, Bertrand D, Ng A, Ravikrishnan A, Yong M, Ng OT, Marimuthu K, Chen SL, Chng KR, Gan YH and Nagarajan N. (2022). Long-term ecological and evolutionary dynamics in the gut microbiomes of carbapenemase-producing Enterobacteriaceae colonized subjects. Nat Microbiol. doi: 10.1038/s41564-022-01221-w. 🔗 

  12. Goncalves RA, Ku JWK, Zhang H, Salim T, Oo G, Zinn AA, Boothroyd C, Tang RMY, Gan CL, Gan YH, and Lam YM. (2022). Copper-Nanoparticle-Coated Fabrics for Rapid and Sustained Antibacterial Activity Applications. CS Appl. Nano Mater. doi: 10.1021/acsanm.2c02736. 🔗 

  13. Yong M, Chen Y, Oo G, Chang KC, Chu WHW, Teo J, Venkatachalam I, Thevasagayam NM, Sridatta PSR, Koh V, Marcoleta AE, Chen H, Nagarajan N, Kalisvar M, Ng OT, and Gan YH. (2022). Dominant Carbapenemase-Encoding Plasmids in Clinical Enterobacterales Isolates and Hypervirulent Klebsiella pneumoniae, Singapore. Emerg Infect Dis 28, 1578-1588. 🔗 

  14. Lim DRX, Chen Y, Ng LF, Gruber J and Gan YH. (2022). Glutathione catabolism by Enterobacteriaceae species to hydrogen sulfide adversely affects viability in host systems in the presence of 5'fluorodeoxyuridine. Mol Microbiol. doi: 10.1111/mmi.14893. 🔗

  15. Ku JWK, Marsh ST, Nai MH, Robinson KS, Thiam DTE, Zhong FL, Brown KA, Lim TC, Lim CT and Gan YH. (2021). Skin models for cutaneous melioidosis reveal Burkholderia  infection dynamics at wound's edge with inflammasome activation, keratinocyte extrusion and epidermal detachment. Emerging Microbes and Infections. 🔗

  16. Ku JWK and Gan YH. (2021). New roles for glutathione: Modulators of bacterial virulence and pathogenesis. Redox Biology 44, 102012. 🔗

  17. Molton JS, Lee R, Bertrand D, Ding Y, Kalimuddin S, Lye DC, Nagarajan N, Gan YH, Archuleta S. (2021). Stool metagenome analysis of patients with Klebisella pneumoniae liver abscess and their domestic partners. Int J Infect Dis 107, 1- 4. 🔗

  18. Zhong W, Shi Z, Mahadevegowda SH, Liu B, Zhang K, Koh CH, Ruan L, Chen Y, Zeden MS, Pee CJE, Marimuthu K, De PP, Ng OT, Zhu Y, Chi YR, Hammond PT, Yang L, Gan YH, Pethe K, Greenberg EP, Grundling A, and Chan-Park MB. (2020). Designer broad-spectrum polyimidazolium antibiotics. PNAS 117, 31376-31385. 🔗

  19. Hoong BYD, Gan YH, Liu H, and Chen ES. (2020). cGAS-STING pathway in oncogenesis and cancer therapeutics. Oncotarget 11, 2930-2955. 🔗

  20. Ku JWK, Chen Y, Lim BJW, Gasser S, Crasta KC, and Gan YH. (2020). Bacterial-induced cell fusion is a danger signal triggering cGAS–STING pathway via micronuclei formation. PNAS. 🔗

  21. Chng KR, Ghosh TS, Tan YH, Nandi T, Lee IR, Ng AHQ, Li C, Ravikrishnan A, Lim KM, Lye D, et al. (2020). Metagenome-wide association analysis identifies microbial determinants of post-antibiotic ecological recovery in the gut. Nat Ecol Evol. 🔗

  22. Qi G, Hu F, Kenry, Chong KC, Wu M, Gan YH, and Liu B. (2020). Bacterium‐Templated Polymer for Self‐Selective Ablation of Multidrug‐Resistant Bacteria. Advanced Functional Materials. 🔗

  23. Chen Y, Marimuthu K, Teo J, Venkatachalam I, Cherng BPZ, De Wang L, Prakki SRS, Xu W, Tan YH, Nguyen LC, Koh TH, Ng OT and Gan YH. (2020). Acquisition of Plasmid with Carbapenem-Resistance Gene blaKPC2 in Hypervirulent Klebsiella pneumoniae, Singapore. Emerg Infect Dis 26, 549-559.  🔗

  24. Si Z, Lim HW, Tay MYF, Du Y, Ruan L, Qiu H, Zamudio-Vazquez R, Reghu S, Chen Y, Tiong WS, Marimuthu PPDe, Ng OT, Zhu Y, Gan YH, Chi YR, Duan H, Bazan GC, Greenberg EP, Chan-Park MB, and Pethe K. (2020). A Glycosylated Cationic Block Poly(beta-peptide) Reverses Intrinsic Antibiotic Resistance in All ESKAPE Gram-Negative Bacteria. Angew Chem Int Ed Engl 59, 6819-6826.  🔗

  25. Tan YH, Chen Y, Chu WHW, Sham LT, and Gan YH. (2020). Cell envelope defects of different capsule-null mutants in K1 hypervirulent Klebsiella pneumoniae can affect bacterial pathogenesis. Mol Microbiol.​  🔗

  26. Hoh CH, Tan YH, and Gan YH. (2019). Protective Role of Kupffer Cells and Macrophages in Klebsiella pneumoniae-Induced Liver Abscess Disease. Infect Immun 87.  🔗

  27. Ku JW, and Gan YH. (2019). Modulation of bacterial virulence and fitness by host glutathione. Curr Opin Microbiol 47, 8-13.  🔗

  28. M C Lam M, Wyres KL, Duchêne S, Wick RR, Judd LM, Gan YH, Hoh CH, Archuleta S, Molton JS, Kalimuddin S, Koh TH, Passet V, Brisse S, Holt KE. (2018). Population genomics of hypervirulent Klebsiella pneumoniae clonal-group 23 reveals early emergence and rapid global dissemination. Nat Commun Jul 13;9(1):2703.  🔗

  29. Gamage MA, Liao C, Cheah IR, Chen Y, RX Lim D.R.X., Ku, JWK, Chee RSLC, Gengenbacher M, Seebeck FP, Halliwell B and Gan YH. (2018). The proteobacterial species Burkholderia pseudomallei produces ergothioneine which enhances virulence in mammalian infection. FASEB J. Jun 11:fj201800716. doi: 10.1096/fj.201800716.  🔗

  30. Lee IR, Sng E, Lee KO, Molton JS, Chan M, Kalimuddin S, Izharuddin E, Lye DC, Archuleta S, Gan YH. (2017). Comparison of diabetic and non-diabetic human leukocytic responses to different capsule types of Klebsiella pneumoniae responsible for causing pyogenic liver abscess. Front Cell Infect Microbiol. 2017 Sep 7;7:401. doi: 10.3389/fcimb.2017.00401. 🔗

  31. Gamage A, Lee KO, Gan YH. (2017). Anti-cancer drug HMBA acts as an adjuvant during intracellular bacterial infections by inducing Type I IFN through STING. J Immunol. 199(7):2491-2502.  🔗

  32. Tan YH, Gamage A, Gan YH. (2017). Complement-activated vitronectin enhances the invasion of non-phagocytic cells by bacterial pathogens Burkholderia and Klebsiella. Cell Microbiol. 2017 Aug;19(8). doi: 10.1111/cmi.12732. 🔗

  33. Lee IR, Molton JS, Wyres KL, Gorrie C, Wong J, Hoh CH, Teo J, Kalimuddin S, Lye DC, Archuleta S, Holt KE and Gan YH. (2016). Differential host susceptibility and bacterial virulence factors driving Klebsiella liver abscess in an ethnically diverse population. Sci Rep. 6:29316.  🔗

  34. Wong J, Chen Y and Gan YH. (2015). Host Cytosolic Glutathione Sensing by a Membrane Histidine Kinase Activates the Type VI Secretion System in an Intracellular Bacterium. Cell Host & Microbe. 18, 1-11.  🔗

  35. Lim YT, Jobichen C, Wong J, Limmathurotsakul D, Li S, Chen Y, Raida M, Srinivasan N, MacAry PA, Sivaraman J, Gan YH. (2015). Extended loop region of Hcp1 is critical for the assembly and function of type VI secretion system in Burkholderia pseudomallei. Sci Rep. Feb 4; 5:8235.  🔗

  36. Teh BE, French CT, Chen Y, Chen IG, Wu TH, Sagullo E, Chiou PY, Teitell MA, Miller JF, Gan YH. (2014). Type three secretion system-mediated escape of Burkholderia pseudomallei into the host cytosol is critical for the activation of NFκB. BMC Microbiol.May 6;14:115.  🔗

  37. Gamage AM, Lee KO, Gan YH. (2014). Effect of oral N-acetyl cysteine supplementation in Type 2 diabetic patients on intracellular glutathione content and innate immune responses to Burkholderia pseudomallei. Microbes Infect. 2014 Aug;16(8):661-71.  🔗

  38. Chen Y, Schröder I, French CT, Jaroszewicz A, Yee X, Teh BE, Toesca IJ, Miller JF, Gan YH. (2014). Characterization and analysis of the Burkholderia pseudomallei BsaN virulence regulon. BMC Microbiol. Aug 1;14(1):206.  🔗

  39. Ooi WF, Ong C, Nandi T, Kreisberg JF, Chua HH, Sun G, Chen Y, Mueller C, Conejero L, Eshaghi M, Ang RM, Liu J, Sobral BW, Korbsrisate S, Gan YH, Titball RW, Bancroft GJ, Valade E, Tan P. (2013) The Condition-Dependent Transcriptional Landscape of Burkholderia pseudomallei. PLOS Genetics. 9(9):e1003795.  🔗

  40. Lee SH, Wong RR, Chin CY, Lim TY, Eng SA, Kong C, Ijap NA, Lau MS, Lim MP, Gan YH, He FL, Tan MW, Nathan S. (2013). Burkholderia pseudomallei suppresses Caenorhabditis elegans immunity by specific degradation of a GATA transcription factor. PNAS. 110(37):15067-72.  🔗

  41. Gan YH. (2013). Host susceptibility factors to bacterial infections in Type 2 diabetes. PLOS Pathog. 9(12):e1003794.  🔗

  42. Tan KS, Lee KO, Low KC, Gamage AM, Liu Y, Tan GY, Koh HQ, Alonso S and Gan YH. (2012). Glutathione deficiency in Type 2 diabetes impairs cytokine responses and control of intracellular bacteria. J. Clin. Invest. 122(6), 2289-2300.  🔗

  43. Chen Y, Wong J, Sun GW, Liu Y, Tan GY and Gan YH. (2011). Regulation of Type VI Secretion System during Burkholderia pseudomallei infection. Infect Immun. 79(8), 3064-3073.  🔗

  44. Sun GW and Gan YH. (2010). Unraveling type III secretion systems in the highly versatile Burkholderia pseudomallei. Trends in Microbiol. 18(12), 561-568.  🔗

  45. Sun GW, Chen Y, Liu Y, Tan GY, Ong C, Tan P and Gan YH. (2010). Identification of a regulatory cascade controlling Type Three Secretion System 3 gene expression in Burkholderia pseudomallei. Mol. Microbiol. 76(3), 677-689.  🔗

  46. Tan KS, Chen Y, Lim YC, Tan GY, Liu Y, Lim YT, MacAry P and Gan YH. (2010). Suppression of host innate immune response by Burkholderia pseudomallei through the virulence factor TssM. J. Immunol. 184,5160-5171.  🔗

  47. Lee YH, Chen YH, Ouyang X and Gan YH. (2010). Identification of tomato plant as a novel host model for Burkholderia pseudomallei. BMC Microbiology. 10:28.  🔗

  48. Breitbach K, Sun GW, Ko¨hler J, Eske K, Wongprompitak P, Tan G, Liu Y, Gan YH and Ivo Steinmetz I. (2009). Caspase 1 mediates resistance in murine melioidosis. Infect. Immun. 77(4), 1589-1595.  🔗

  49. Ye Z, Lee CML, Sun GW and Gan YH. (2008) Burkholderia pseudomallei infection of T cells leads to T cell costimulation partially provided by flagellin. Infect. Immun. 76, 2541-2550.  🔗

  50. Hii CS, Sun GW, Goh JWK, Lu J, Stevens MP and Gan YH. (2008) IL-8 induction by Burkholderia pseudomallei can occur without Toll-like receptor signaling but requires a functional Type III secretion system. J. Infect. Dis., 197,1537-1547.  🔗

  51. Ye ZY and Gan YH. (2007). Flagellin contamination of recombinant heat shock protein 70 is responsible for its activity on T cells. J Biol Chem, 282:4479-4484.  🔗

  52. Koo GC and Gan YH. (2006). The innate interferon gamma response of BALB/c and C57BL/6 mice to in vitro Burkholderia pseudomallei infection. BMC Immunol, 7:19.  🔗

  53. Gan YH. (2005). Interaction of Burkholderia pseudomallei with host immune response: sleeping with the enemy? J. Infect. Dis., 192:1845-1850.  🔗

  54. Sun GW, Lu J, Pervaiz S, Cao WP and Gan YH. (2005). Caspase-1 dependent macrophage death induced by Burkholderia pseudomallei. Cell. Microbiol., 7(10), 1447-1458.  🔗

  55. Chen K, Sun GW, Chua KL, and Gan YH. (2005). Modified Virulence of Antibiotic-induced Burkholderia pseudomallei Filaments. Antimicrob. Agents Chemotherapy, 49(3), 1002-1009.  🔗

  56. Chua KL, Chan YY and Gan YH. (2003). Flagella, a virulence determinant in Burkholderia pseudomallei. Infect. Immun. 71, 1622-1629.  🔗

  57. Gan YH, Chua KL, Chua HH, Liu BP, Hii CS, Chong HL and Tan P (2002). Characterization of B. pseudomallei infection and identification of novel virulence factors using a C. elegans host system. Mol. Microbiol. 44, 1185-1197.  🔗

  58. Liu BP, Koo GC, Yap EH, Chua KL and Gan YH (2002). A model of differential susceptibility to mucosal infection of Burkholderia pseudomallei. Infect. Immun. 70, 504-511.  🔗

© 2024 by Y.H. Gan Lab.

bottom of page